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Abstract

We explore whether we can predict the arrow of time in
a temporal sequence, i.e. if it is possible to tell whether
a video is running forwards or backwards. We develop a
framework using computer vision tools and machine learn-
ing to carry out this first part of the project. We then focus
on the important types of motion features for predicting the
arrow of time. The second part of the project aims at local-
izing them in the image sequences by exhibiting an influence
map for the decision.

1. Introduction
For decades physicist have tried to explain the notion of
time. Even if this question seems simple, numerous physi-
cists spend all their lives trying to understand the mystery
of time. At the beginning of the twentieth century, Boltz-
mann spent a great deal of effort in his final years defend-
ing his theories on the H-Theorem (early demonstration of
the second law of thermodynamics). It was countered by
Loschmidt’s paradox: how it is possible that there could be
a thermodynamic arrow of time given time-symmetric fun-
damental laws, since time-symmetry implies that for any
process compatible with these fundamental laws, a reversed
version that looks exactly like a film of the first process
played backwards would be equally compatible with the
same fundamental laws. And would even be equally prob-
able if one were to pick the system’s initial state randomly
from the phase space of all possible states for that system.
Confronted with this paradox, Boltzmann committed sui-
cide a few years later when he failed to solve the paradox ei-
ther mathematically or philosophically. Nowadays we know
from chaos theory and the fluctuation theorem that their ex-
ist an arrow of thermodynamics and our goal will be to as-
say whether and how the direction of time manifests itself
visually. More precisely, we are looking at the reversibil-
ity of time in videos. We will investigate, for example,
if certain motions can be time-reversed without breaking
physics’ laws. A trivial case would be an harmonic motions
without damping.

2. Extracting motion in image sequences
Based on [3] and their data-set (available at
http://www.robots.ox.ac.uk/data/arrow/), we followed
a typical framework to compute the motion in images
sequence using an estimation of the optical flow. Several
methods have arisen to achieve this calculation and we
tested both traditional and Convolutional Neural Network
(CNN)-based methods.

2.1. CNN for optical flow estimation

Our first attempt to estimate the optical flow was using a
pre-trained CNN. We used the codes provided in [4] and
followed their guidelines to estimate the optical flow but we
never achieved satisfying results. The main problem was
the output size, which was too small to catch the motion
of small parts (e.g. splashing water) in the videos. The
second problem was that the CNN required fine tuning for
each videos and therefore we could not obtain a universal
framework. The CNN was pre-trained using cartoon-like
videos and we think that this type of training might not be
fully adapted for real videos. Our next attempt at estimating
the optical flow was with a more traditional approach.

2.2. Lucas-Kanade DoG method for optical flow
estimation

The Lucas-Kanade derivative of Gaussian method [2] takes
two input images and divides them into smaller sections and
assumes a constant velocity in each section. Then, it per-
forms a weighted least-square fit of the optical flow con-
straint equation to a constant model in each section. In or-
der to reduce the noise in the optical flow estimation, we
introduced a threshold to put to zero the small velocity val-
ues. We thus obtained a sparse matrix containing a vector
(Vx, Vy) in each pixel.

2.3. Construction of higher representation features

At this step, supposing that the optical flow is correctly es-
timated and that the images contain N = n × m pixels,
we have a 2N dimensional vector with which we want to
tell whether it belongs to a ”forward class” or to a ”back-
ward class”. The curse of dimensionality precludes us from
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predicting directly the arrow of time in such a high dimen-
sional space. We therefore need to extract some higher rep-
resentation features from the optical flow to hope achieving
accurate predictions of the arrow of time.

2.4. CNN for extracting features

We used a pre-trained CNN for image classification for this
task (matconvnet-vgg-f). As it was trained on RGB images
it requires a 3D tensor in input and we decided to introduce
some redundancy to create the third dimension:

• The first n×m matrix is Vx

• The second n×m matrix is Vy

• The third n×m matrix is θ = arctan
(

Vy

Vx

)
The input images size required for using the CNN was
224 × 224 × 3. Our videos were mostly taken in full
HD (1920 × 1080) and we performed a bilinear down-
sampling, followed by a rescaling (RGB images are ranging
in [0,255]) and a normalization (provided in the CNN struc-
ture) before feeding the CNN with our artificial images.
For each 224× 224× 3 input we only kept one of the fully
connected neural network layer (fc7 and fc8), which is a
4096 dimensional vector. For a given video composed by
N images, we computed N − 1 optical flows and extracted
N − 1 features vectors. We concatenated these vectors in
an unique matrix for further processing with a SVM.

3. Predicting the arrow of time
In the aim of predicting the arrow of time and evaluating
our method we followed the same procedure as in [3]. The
dataset was divided into 60 testing videos and 120 train-
ing videos, in three different ways such that each video ap-
peared as a testing video exactly once and training exactly
twice. The backwards-to-forwards video ratios for the three
test sets were 9:51, 8:52 and 8:52. The evaluation measure
is the proportion of the testing videos on which the method
could correctly predict the time-direction.

3.1. Separating motion features with a linear sup-
port vector machine (SVM)

In order to distinguish forward and backward motion fea-
tures we trained a linear SVM. Each optical flow features
are used for the training step with their corresponding
label. For the testing step, we predict the arrow of time
for each optical flow feature vector and proceed to a vote
for the final decision: if the number of forward votes are
preponderant, then the video is predicted to be forward. We
also tried to simply calculate the mean response for a video
and the results were quite the same.

Figure 1. Black: SVM response for each optical flow feature vec-
tor - Red: Mean response for a given video - Blue: Boundary
between forward and backward classification

Using a cross-validation we obtained the best results for
C = 10 and with L2 normalization. Using the same pro-
tocol as in [3] we obtained the following valid prediction
for the arrow of time:

set 1 set 2 set 3
[3] 75% 90% 77%

fc8 - L2 norm. 83% 92% 88%
fc8 - No norm. 82% 92% 87%
fc7 - L2 norm. 85% 90% 88%

Our method differs from [3] by the fact that we use CNN to
extract motion features instead of traditional features (his-
tograms SIFT-like). Using CNN led to an improvement in
the prediction of the arrow of time. In order to understand
why our method works well we carried out some further
experiments.

3.2. Understanding which motions are important
for time’s arrow prediction

We reversed the 155 forward videos from the data-set. We
did the same computation: estimate the optical flow with
Lucas-Kanade DoG method and then extract motion fea-
tures with a CNN. We then computed the differences for
each motion vector. In order to remove the noise we ap-
plied a threshold on the differences (if the difference is not
high enough, it is put to zero). We then summed the differ-
ences along both the neurones axis and the videos axis, we
then obtained the following figure.
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Figure 2. Up: Neurones which are important on FC8 layer for
predicting the arrow of time - Down: Videos responses differences
between forward and backward

We can see that only a few neurones are specialised into
detecting the arrow of time. We can also see that for some
videos it is easier to predict the arrow of time. For example,
the two videos that present the highest differences in for-
ward versus backward motions are a video of the birth of a
jellyfish and a video of the breaking of an iceberg. On the
contrary, one of the most difficult video for time direction
prediction is a flag moving due to the wind. Locally, the
motion of the flag is harmonic and it is therefore difficult to
predict, even for a human, the time direction.

Figure 3. Breaking of an ice-
berg: easy to predict

Figure 4. Flag in wind: hard to
predict

3.3. Test on YouTube videos

We run our method on forward and backward videos down-
loaded from YouTube, see examples below.

We extracted 200 frames for each videos, calculated the op-
tial flow using the Lucas-Kanade DoG method and then ex-
tracted feature vectors with CNN (matconvnet-vgg-f, fc8
layer with L2 normalization). We trained a linear SVM
with the whole set (180 videos) before testing on YouTube
videos. We were able to correctly predict the arrow of time
for 4 videos out of 5. The method seems therefore to cor-
rectly predict the time direction in image sequences (ran-
dom responses would lead to 50% accuracy).

4. Localizing key motions in videos for time di-
rection prediction

4.1. Motivation and setup

Once achieved a satisfactory prediction accuracy for time
direction prediction, a natural extension is to understand
what the system has learnt. This section is devoted to un-
derstanding which types of motions the network used for
prediction.
In order to do this, we drew inspiration from [1], which
proposed a framework for building class activation maps
(CAM), a representation that exposes the implicit attention
of CNNs on an image. The first key observation made by
the authors was that removing the fully connected layers at
the end of the network enabled it to keep its localization
ability. And secondly, that average pooling was a better fit-
ted criteria than max pooling for the task of precisely acti-
vating regions. From the VGGnet, we performed the fol-
lowing steps:

• Remove the fully-connected layers

• Perform global average pooling on the convolutional
feature maps

• Add a fully connected layer to produce the categorical
output (here forward or backward)

• CAM: projecting back the weights on to the convolu-
tional feature maps

Initializing the network using the pretrained weights from
[1], we re-trained this modified network on the optical flows
obtained as described above, keeping 20% of the data for
testing. Once the class activation maps were obtained on
optical flow virtual images, we projected these maps back
on the sequences of videos frames for easier interpretation.
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Figure 5. Backward flying pillows activation map

4.2. Results and discussion

This modified network suffered from a significant drop in
classification results. Indeed, although the accuracy on the
test set was of 86%, close to previous results, the recall rate
for backward videos, which is more adapted to this skewed
classification problem, dropped to 36%. As noted by the au-
thors from [1], this is to be expected, as the fully connected
layers are known to highly increase classification results.
Observing the class activation maps generated, we see that
the focus on the network (i.e. the activated regions) is on
the ”moving” parts of successive frames:

• In Figure 5 from a backward video, the focus is first to
the stack of pillows in the air (and not on the persons),
then to the bent knees.

• In Figure 6 from a forward video, the focus is first on
the iceberg falling, then on the water.

Perhaps even more importantly, it seems that indeed, the
network has learnt to discard harmonic types of motions
and focus on diverging or converging motions. This is ob-
vious in Figure 7, from a forward video of a vintage steam
engine. Indeed, the regions containing the piston and the
wheel, with harmonic movements are discarded. Whereas

Figure 6. Forward breaking of an iceberg activation map

Figure 7. Forward steam engine activation map

the region containing the steam (undetectable in the small
figures here), with a clear divergent movement, (and the
only part of the video from which it is possible to infer to
array of time) is the only one activated.
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5. Conclusion
In this work we applied both recent techniques such as CNN
and not so recent ones such as Lucas Kanade’s optical flow
to predict the arrow of time in videos. We yielded a high ac-
curacy (90%), and on broad types of videos and movements.
Moreover, wrong predictions seem to be the most difficult
videos to predict even for humans (harmonic motion with-
out damping). We then turned to the problem of understand-
ing which regions and which motions are key to predict the
arrow of time. We were able to verify that the network
focuses on ”moving” regions, and on non-harmonic move-
ments more specifically. Some possible improvements may
use multi-resolution in time, as time was only captured here
by optical flows calculated on successive frames.
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